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A new method for solving a generalized Burgers-KortewegdeVries (BKdV) equation is 
presented. This new method consists of two symbiotic aspects-analytical and numerical, 
respectively. The analytical aspect consists of obtaining the propagators-which are the non- 
linear analogues of Green’s functions-for the BKdV equation, and subsequently using these 
propagators to obtain the BKdV solution as a fixed-point integral equation. The numerical 
aspect consists of developing a highly efficient and accurate method for solving this integral 
equation. Benchmarking comparisons using the KortewegdeVries and Burgers equations 
indicate that our new method is efftcient, accurate, and robust. ‘7‘1 1990 Academic Press, Inc. 

I. INTRODUCTION 

Recently, Cacuci, Perez, and Protopopescu [ 1 ] have proposed a new formalism 
for solving scalar nonlinear problems; Cacuci and Protopopescu [2] have sub- 
sequently extended it to multicomponent (i.e., matrix) nonlinear systems. This 
formalism represents a generalization to nonlinear systems of the classical Green’s 
function method in linear theory. In this formalism, the analogues of the Green’s 
functions are forward and backward propagators that are canonically constructed 
from the original nonlinear system. These propagators are then used to obtain a 
closed-form expression for the solution of the original system; this procedure 
effectively recasts the original system-usually a nonlinear initial/boundary value 
problem-into an equivalent nonlinear integral equation which is, in principle, 
easier to solve. 

In this work, we apply this general canonical formalism [ 1, 23 to solve a non- 
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linear equation that generalizes both the Burgers and the KortewegdeVries (KdV) 
equations. The analytical aspect of our new method is presented in Section II and 
consists of deriving the respective propagators and obtaining the closed-form 
expression for the solution of this generalized Burgers-KortewegdeVries (BKdV) 
equation in terms of these propagators. The numerical aspect of our method is 
presented in Section III and consists of developing an accurate and efficient procedure 
for solving numerically the closed-form expression obtained in Section II. Section III 
also presents several numerical experiments, including comparisons for the KdV 
equation between our new method and the method, based on the inverse scattering 
transform, presented by Taha and Ablowitz [3], the method of Zabuski and 
Kruskal [4] as presented in Ref. [3], and a finite element method (FEM) 
described in Refs. [S-7]. Finally, our conclusions are summarized in Section IV. 

II. A GENERALIZED BURGERS-K• RTEWECFDE~RIES EQUATION 

The generalized Burgers-Korteweg-deVries (BKdV) equation introduced in this 
work is 

N(u) = u, + r/u, + upu, - vu.,, + EM.,,, = 0, (1) 

where u(x, t) is a real-valued function of the two real variables x and t, the quan- 
tities 4, v, and E are real constants, and the subscripts denote partial differentiations. 
Equation (1) generalizes both the Burgers equation and the Korteweg-deVries 
(KdV) equation: the former is obtained from Eq. (1) by setting q = 0, p = 1, v = 1, 
and E = 0, while the latter is obtained from Eq. (1) by setting q = 0, p = 1, v = 0, and 
E= 1. 

Throughout this work, we consider that XE [0, l] and t E [0, 7’1, where T is 
some final-time value; the nonlinear operator N(u) defined by Eq. (1) is the map- 
ping N(u): D(N)c H+ R, where D(N) is the domain D(N)= C3([0, l] x [0, T]), 
and H is the Hilbert space H = L*((O, 1) x (0, T)) endowed with the inner product 

(u, v) SE j-d dx JOT u(x, t) v(x, t) dt, UEH, v E H. 

The domain D(N) is further specified by considering that u(x, t) satisfies the 
periodic boundary conditions 

{f3h/dx’}.x=o= (d’u/dx’}x,l, j=o, 1,2, (3) 

and the initial-time condition 

u(x, O) = Uin(X), (4) 

where u,,(x) is a known function of x. 
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III. SOLUTION OF THE BKdV EQUATION BY THE METHOD 
OF NONLINEAR PROPAGATORS 

1II.A. Nonlinear Propagators for the BKdV Equation 

The concept of forward and backward propagators for nonlinear problems has 
been introduced by Cacuci et al. [ 11; they showed that these propagators play a 
role analogous to that played by the customary Green’s functions for linear 
problems. Applying the procedure presented in Ref. [l] to Eq. (l), we obtain 
propagators for the BKdV equation as follows: 

The Gateaux (G-)derivative N’(u,) of N(u) at a point uO E D(N) exists and is 
explicitly obtained by applying its definition 

N’(uo) h = J$o CN(uo + yh) - N(wJlly, 

to Eq. (1); this gives 

h E D(N), 

N’(u,) h = (a/at + )$/ax + pi;-’ duo/ax + u; a/ax 

- va’lax’+ Ea’/dX’) h. (5) 

Note that N’(u,) acts linearly on h, but depends nonlinearly on the parameter uO. 
The formal adjoint [N’(u)] * of N’(u) is obtained from Eq. (5) as - 

[~++yk= [-a/at-ra/ax-UPa/aX-va2/ax2-Ea3a3X] u, VEH 

Next, we define the operators 

L*(u)+-; [N’(p)]* t’dy (7) 

and 

L(u) h = s’ N’(p) h dy. 
0 

Using Eqs. (6) and (5) in Eqs. (7) and (8 ), respectively, yields 

~*(~)~=~-a~at-~a~a~-(~+i)~~~~a/a~-~a~~a~~ 

and 

- Ed3/dX3] V 

L(u) h= [a/&+?$/ax+(p+ 1)-l a(uP~)/dx-v~2/~x2+Ed3/dX3] h. 

Note the important property, 

L(u) u = N(u), 

(6) 

(8) 

(9) 

(10) 

(11) 
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and the important relationship 

(L(u) k v> = (k L*(u) v> + {J7u)(h, VI>, UEH, v E H, (12) 

where the boundary form (Z(u)(h, v)}, defined as 

{W4(h, 4) = ?‘,’ [4x, T) 4x, T) - h(x, 0) 4x, 011 dx 

+ jo= [qhv + (p + 1) ~’ uPuh - v(uh, - hu,) 

+ duhxx - v&x + hv.,)l’:z:, & (13) 

is bilinear in h and u while depending nonlinearly on the parameter U. In particular, 
Eq. (12) holds for h = u and v = G,*(x, t; x i, ti), where the function G,*(x, t; x1, tl), 
henceforth called the forward or advanced propagator, is chosen to be the solution 
of the linear system 

L*(u) G,*(x, t;x,, tl)=b(x-xl)d(t- tl), (14) 

subject to the time condition 

G,*(x, t;x,, tI)=O for t> tl, (15) 

and the (periodic) boundary conditions 

{t?G,*(x, t;x,, t,)/dxJ},=, = (d’G,*(x, t; xl, t,,Px’>.= 1 

for j=O, 1,2. (16) 

In Eq. (14), 6(x) is the customary Dirac-delta distribution. 
Writing Eq. (12) for h = u and v = G,*, and using Eqs. (l), (3), (4), (ll), (15), and 

(16) leads to the following expression for the solution u(x, t) of the BKdV equation: 

u(x, t)=jl Uin(Y) G,*(.Y, 0; X2 t) dY. (17) 
0 

The relationship expressed by Eq. (17) underscores the fact that the forward 
propagator, G,*, “propagates” the initial distribution uin(x) from the phase-space 
location (y, 0) to the phase-space location (x, t). As noted by Cacuci et al. [ 11, the 
role played by G,* is entirely similar to that played by the customary Green’s 
function encountered in linear problems, such as in field theory and quantum 
mechanics. There are two reasons for choosing the time/boundary conditions for 
G,* as given by Eqs. (15) and (16): 

(a) these conditions form, together with Eq. (14), a well-posed problem 
admitting, for each u(x, t), a unique solution G,*, and 
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(b) replacing these conditions together with the initial/boundary conditions 
[i.e., Eqs. (3) and (4)] for the BKdV problem in Eq. (13) leads to the cancellation 
of all but one of the terms in the boundary form {Z(u)(u, G,*)}. 

Using the propagator G,*, we have succeeded in recasting the original BKdV 
equation-a nonlinear partial differential equation subject to initial/boundary 
conditions-into the implicit nonlinear integral equation (17). The implicitness of 
Eq. (17) stems from the fact that G,* depends implicitly and nonlinearly on the 
solution u(x, t). 

To recast the implicit integral equation for u(x, t) given by Eq. (17) into a form 
that can be solved efficiently and accurately, we introduce the auxiliary forward 
propagator Gz(x, t; x,, cl), defined as the solution of the initial/boundary value 
problem obtained by replacing the unknown function u(x, t) in Eqs. (14) through 
(16) with a known function u,, E D(N), namely, 

L*(u,) G,*(x, t;x,, t,)- -aG,*/at- [uo”(p+ 1))‘+q] aG,*/c?x 

- V a2G,*laX2 - E a3G,*/as3 

=6(x-x,)6(t-t,), 

G,*(x, t;x,, t,)=O for t> t,, 

(18) 

(19) 

{ajwa+,,= {ajG:/axJj.r=l for j=o, i,2. (20) 

At this stage, the implicit nonlinear equation (17) for the solution u(x, t) can 
be recast into an explicit nonlinear integral equation involving the auxiliary 
propagator G$(x, t; x,, t,) via the following sequence of operations, 

4x9 t) = <4x, > t1), w, -xl 4t, - t)> 
= (u(x 1, TV), L*(u,(x,, [I)) G,*(x,, tl; x, f)> 
= (u(x I 9 tl), CL*(Q) - L*(u)1 GXx, , f, ; x, f) > 

+ (4x,, fl), L*(u(x,, [I)) GW,, f,; x, t)> 

= (u(xI, tl), CL*(u,) - L*(u)] G,*(x,, t, ; x, t) > 

+ (L(u) 4x,, tl)), G,*(x,, ~1; x, f)> - (WW, G,.?)}, (21) 

where the last equality was obtained by using Eq. (12), with h -+ u(x,, t,) and 
u + G$(xI, t,; x, t), to replace the term (u, L*(u) G,*). Next, we (i) note that 
(L(u)u,G,*)=(N(u),G,*)=O in view of Eqs. (11) and (1), (ii)replace the 
operators L*(u,) and L(u) by their respective expressions and perform the subtrac- 
tion L*(u,) -L*(u) indicated in Eq. (21), and (iii) use the initial and boundary 
conditions given in Eqs. (3) and (4) for u(x, t), and Eqs. (19) and (20) for G,*, 
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respectively, to simplify the expression of {Z(u)(u, G,*)} in Eq. (21). Consequently, 
Eq. (21) reduces to 

x (C4x1r ~I)u,P(x~, r,)-~~+~(xlr tl)l =,Xx,, t,;x, t)Px,}. (22) 

Equation (22) gives the closed-form expression of the solution u(x, t) of the BKdV 
equation; it is a nonlinear integral equation whose solution requires the knowledge 
of the function G,*(x,, t,; x, t). Solving Eq. (22) would be most easily accomplished 
if the auxiliary propagator G,*(x,, t, ; x, t) could be obtained by solving Eqs. 
(18t(20) exactly, analytically. Since the choice of u0 is entirely at our disposal, we 
note that Eqs. (18)-(20) could be solved readily if u,, were a constant, independent 
of x and t. 

Selecting u0 = const and noting that consequently 

rl+u,P(p+ l))‘=const, (23) 

the exact expression of G$(xr, t,; x, t) can be readily obtained by solving 
Eqs. (18)-(20) via a Fourier transform in space and a Laplace transform in time. 
The final result is 

G,*(x,, r,;x, t)=H(r-r,) 1+2 f exp[-4n2n2v(r-rI)] 
n=l 

xcos 27w q+ (r-rI)-(X-X,) 11 , (24) 

where 

H(r) = 
0 if r<O 

1 if ra0 

is the customary Heaviside (unit-step) function. 
Note that for the particular value u0 -0, the operator L* (u,=O) becomes 

the formal adjoint of the linearized BKdV operator, i.e., the adjoint of 
(a/at + qa/ax - va’/d.x* + sd3/dx3). Consequently, for u0 - 0, the auxiliary 
propagator G,*(x, r; xi, rI) becomes the Green’s function for the linearized BKdV 
equation. We also note that for uO- 0, Eq. (22) reduces to a form that includes, 
in Fourier space, both the Fornberg and Whitham [8] formulation for the 
Korteweg-deVries equation and the Canuto et al. [9] “integrating-factor” 
technique for the Burgers equation. 

1II.B. Numerical Procedure 

The fixed-point form solution to the BKdV equation given by Eq. (22) lends itself 
remarkably well to a variety of numerical discretizations: finite difference, finite 
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element, or spectral decomposition for the spatial variable, and a host of temporal 
schemes. Note also the important fact that the numerically troublesome u.,,, term 
which appears in the original PDE, cf. Eq. (1) no longer appears in the integral 
solution (22). 

To solve Eq. (22) numerically, we have implemented a spectral method (i.e., 
a truncated Fourier series) for the spatial variable with a class of implicit 
Runge-Kutta methods for the temporal integral. This method of solving Eq. (22) 
will be described in the following. 

Setting p = 1 and using the representation 

24(x, t) = f {a,(t) cos 27znx + b,(t) sin 27rnx}, (25) 
n=O 

in Eq. (22), and performing the straightforward integrations and algebra, we obtain 
the expressions for the coefficients appearing in Eq. (25), 

and 

so(t) = Q,(O), ho(t) = 0, t30, (26) 

u,,(t) = a,(O) cos 2rcn~,, t - b,,(O) sin 2nne,, t 

71 r 
--HJ^ sin2xnr,(t-t,) 

2 0 {( 
c+c 

r+s=n 1). SI = I, > 
4fl) dt,) 

+( C - 1 )b,(t,)b.,(t,)}~t,-nn~~cos2nnr,,(t-t~) 
II-.,I=,, r+>=n 

x c-c+c 
( 

aAt,) b,(t,) dt,, n> 1, (27) 
r+.s=,, r-,=,1 s-r=,, > 

b,(t) = a,(O) sin 27mz,, t + b,(O) cos 237m, t 

+in s 

f 
cos 27m,,( t - t, ) 

{( 
c+c 

> 
aAt,) aAt, 1 

+(i -1) 

?-+,V=tl IT-.\I=?? 

where r, = q + ui(p + 1) -’ - 4x2n2&, and the summation indices are nonnegative. In 
actual computations, we carry only a finite number, nf, of Fourier modes. 

The initial Fourier coefficients {u,(O), h,O} for n = 0, 1, . . . . nf, are obtained by a 
discrete least-squares technique using the formulae 

u,,(o)=;2y Uin &j co+ ( .> l<ndn,<M, 
/=O 

(29) 
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a,(O) = & ‘y ’ Uj” 
/=o ( ‘> 

& 

and 

bn(0)=$2Tf’ uin (&) sin;, Odn6nf6M. 
/=O 

(30) 

In the actual computations, we used the value M = 100. 
To generate the temporal discretizations, we first note that Eqs. (27) and (28) 

constitute a system of nonlinear integral equations of the form 

where, for each n, the quantity 

g(t) = u,(O) cos 2nnr, t + b,(O) sin %rcnt, t, 

is known, whilef( ., ., .) contains the integral terms appearing on the right sides of 
Eqs. (27) and (28). 

To solve Eq. (31), we implemented a time-stepping procedure as follows: we 
select a time-stepsize k > 0 and a time-discretization procedure (to be described 
below) for the selected k; this discretization procedure is then applied repeatedly, 
until the desired final time T is attained in J steps, for some integer J satisfying 
kJ = T. This approach is feasible because both f in Eq. (31) and G,* depend 
explicitly only on the difference t - t, ; furthermore, this approach is both faster and 
more economical (requiring less storage) than a global method in time. 

As the basic time discretization procedure for each k, we use a class of implicit 
Runge-Kutta (IRK) methods corresponding to numerical quadrature schemes of 
Gauss-Legendre type (see Ref. [lo]). In addition to excellent stability and accuracy 
properties, this family of methods conserves numerically the first two invariants, i.e., 
1: u dx and j: u2 dx, of the BKdV equation. 

A q-stage IRK method is characterized by a set of constants given by the tableau 

a11 ... Uly 
$1’ 

J a 41 '.. U 44 
+Y) 

b, ... b, 
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For example, for q = 1, this tableau reads 

while for q = 2, this tableau reads 

Thus, given y” as an approximation to y(O), an approximation y1 to y(k) defined 
by Eq. (31) is obtained as 

y(k) = g(k) + k i b,f(k, kt(‘), y”‘), 
./ = 1 

(32) 

where the unknown quantities y”), . . . . y(Y) are given by the set of equations 

y(j) = g(+“) + k i a,f(kt”‘, kt”‘, y”‘), i= 1 , ..., 4. (33) 
j= I 

Most of the computational effort is needed for finding or (when efficiency dictates 
otherwise) approximating the quantities y”‘, . . . . y’y’. For sufficiently regular func- 
tions g and f, the procedure described by Eqs. (32) and (33) produces approxima- 
tions to the solution y of Eq. (31) with temporal errors that decrease at the rate k2y. 

For the IRK corresponding to q = 1, the time discretization equations are 

uf, = a,(O) cos r,k- b,(O) sin t,k 

k k 
--rrnsint,- 

2 2 K r+L+ ,,_F;Jai”“:l)+(,rf;= 

-km cos T,, i 
( 

c-c+c IS) 
> 

a”)b”’ 
r+b=n r-i=,, F -r=n 

bf, = a,(O) sin z,k + b,(O) cos z,k 

- 

,I / 

(34) 
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where, for n 3 1, the quantities a!,’ and b!,” are defined as 

a:” = a,(O) cos z, 
k 
2-b,,(O)sinr,,i-inn c-c+c t-.5) 

> 
a”‘b”’ (36) 

I + s = I, r-s=n .s- r=n 

and 

b”‘=a (0)cosz k+b (0)cosz k n n n? n 11 e 

Note that for n = 0, we require that at’ = a,(O) and bt’ = 0. 
For higher order (q > 2) IRK methods, the equations resulting from Eqs. (32) 

and (33) are similar to, but more complicated than, Eqs. (34) through (37). 
The coupled nonlinear system described by Eqs. (36) and (37) was solved by a 

simple fixed-point-type iteration of the form ZI+ I = F(Z,), I = 0, 1 , . . . . 1 For each max 
time step, jk, j = 0, 1, . . . . J, starting points that help minimize the number of fixed- 
point iterations on I were obtained by using a linear extrapolation of values at the 
two previous time steps; thus, Z (for I= 0, jk) = $cjk - it+ ,Jk, where the vectors 
5 have as components the quantities a,(O) and b,(O) as they appear on the right 
side of Eqs. (36) and (37). For the fourth-order (q= 2) IRK method, we used a 
cubic (involving values at four previous time steps) rather than a linear extrapola- 
tion. With these starting points, none of the actual computations required more 
than one fixed point iteration on 1. 

IV. NUMERICAL EXPERIMENTS 

To obtain a comparative evaluation of the efficiency of our new (i.e., propagator- 
spectral-IRK) method, henceforth denoted as CK-S, we used as benchmarks two 
schemes described in [3], namely a finite difference scheme due to Zabuski and 
Kruskal [4], henceforth denoted as ZK, and the local-method of Taha and 
Ablowitz [3], henceforth denoted as TA-L, based on the inverse scattering trans- 
form. We chose the TA-L method for comparison to ours because Taha and 
Ablowitz [3] indicate that the TA-L method was the most efficient of a host of 
other numerical techniques (reported prior to their work) for solving the KdV 
equation. On the other hand, we chose the ZK method for comparison purposes 
not only because it was used by Zabuski and Kruskal [4] in their pioneering work 
on solitons but also because we repeated their “recurrence time” experiment using 
our method. In addition, we compared our CK-S method to a finite element 
(Galerkin) procedure, henceforth denoted by FEM, described in Refs. [5-71. To 
our knowledge, this is the only additional technique for solving the KdV equation 
published since the Taha-Ablowitz work [3]. In this FEM procedure, the spatial 
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discretization is achieved by using smooth splines on a uniform grid, while the tem- 
poral discretizations are obtained by using IRK schemes similar to those described 
earlier in this work. 

We performed the numerical comparisons between the ZK, TA-L, FEM, and 
CK-S methods in a scalar mode using FORTRAN on the IBM 3090 at the Univer- 
sity of Tennessee, Knoxville. The exact benchmark used in these comparisons was 
the solitary wave solution 

u(x, t) = A sech’ 
[&-;)I (38) 

of the KdV equation u, + uu, + EU,,, = 0. Also, to conform to the experiments 
described in [3], we have taken E = 1.042 x 10p4, T = 0.15, and values of the 
amplitude A = 1, 2, and 4. 

Results of our numerical experiments for the solitary wave solution are sum- 
marized in Table I. For the ZK and TA-L methods, we used as the measure of 
accuracy the quantity error = max{ ju(xi, T) - Ui( T)l }, where Ui( T) denotes the 
value of the approximate solution at the ith spatial node xi. For the CK-S and 
FEM methods, we used as the measure of accuracy the quantity 

error=Oy,yN { Iu(x~, T)- ui(T)l}, 
,. 

where xi = i/N, i = 0, . . . . N, with N= 500 and 1024, respectively. The levels of 
accuracy used in Table I are chosen to conform to those reported by Taha and 
Ablowitz [3]. For each method, we experimented to optimize the number of time 
and spatial intervals in order to achieve the reported level of accuracy using the 
least amount of computational work. Also, the CPU times reported in Table I 
concern only the numerical integration of the KdV equation; specifically, we did 
not lump these CPU times together with the CPU times used to compute the 
respective errors. For this reason, the ratios of the CPU times between the ZK and 
TA-L techniques shown in Table I differ from those reported in [3]. 

Several remarks can be made based on the numerical experiments summarized in 
Table I : 

1. A single iteration of the fixed-point form ZI+ , = F(Z,) of Eqs. (36) and 
(37) was usually sufficient to preserve the stability of the time-stepping procedure 
in the CK-S method. We believe this is due to the fact that the term u,,,~ is 
completely eliminated in the CK-S method [cf. Eq. (22)]. The increased accuracy 
given by additional fixed-point iterations was not cost effective; in almost all cases, 
fixed-point convergence was obtained in less than five iterations, with essentially no 
change between the fourth and fifth iteration. 

2. The two-stage (fourth-order) IRK scheme generally outperformed the one- 
stage (second-order) IRK scheme. In all experiments, the one-stage IRK scheme 
proved superior to the ZK method. Increasing the number of temporal/spatial steps 
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TABLE I 

Results from Selected Methods for Solving the KdV Equation 

Method 
Error No. of time 

(x 103) steps 

No. of spatial 
subintervals 

(n, = Fourier modes) 
CPU 

(seconds) 

A=l 

ZK 4.69 
ZK 1.79 

TA-L 3.20 
TA-L 1.73 
FEM 4.40 
FEM 1.61 
CK-S 4.34 
CK-S 1.55 

A=2 

ZK 9.3 5264 
ZK 3.31 25000 

TA-L 9.70 10 
TA-L 3.32 10 
FEM 9.80 30 
FEM 3.105 20 
CK-S 9.17 58 
CK-S 2.95 90 

A=4 

ZK 33.54 
ZK 94.85 

TA-L 17.47 
TA-L 1.79 
FEM 17.65 
FEM 1.48 
CK-S 17.3 
CK-S 1.7 

500 230 0.134 
4000 375 1.67 

7 250 0.078 
8 250 0.084 
7 128 0.043 
10 128 0.054 
19 ?I, = 22 0.059 
22 n, = 25 0.073 

25000 
5264 

37 
75 

235 
73 

225 
382 

500 2.97 
840 22.63 
370 0.277 
400 0.300 
128 0.129 
128 0.284 

II, = 32 0.163 
n, = 36 0.262 

840 23.36 
500 2.97 
800 1.87 
1524 4.14 
192 1.03” 
192 1.67” 

n,=48 0.9 
n, = 60 2.18 

“Different temporal schemes were used in these two runs. 

in the ZK method beyond the 25000/840 combination rendered this method 
unstable. 

3. The CK-S method is comparable to the FEM method; the ratio between 
the CPU times for the CK-S and FEM methods, respectively, varied between 0.87 
and 1.37. 

4. The CK-S method appears to be more efficient than the TA-L method; the 
ratio between the CPU times for the TA-L method and the CPU times for the 
CK-S method varied between 1.15 for A = 1 and 2.19 for A = 4, the CK-S method 
becoming more efficient with increasing soliton amplitude. 
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FIG. 1. KdV equation: u,, = cos 2n.q E = 1.21 x lo-$ solution at t = 0.8063. 

In addition to the experiments summarized in Table I, we have used the CK-S 
method with initial condition u,,(x) = cos 27tx, E = 1.21 x 10p4, and v = 0 to repeat 
the “recurrence time” experiment of Zabuski and Kruskal [4]. Figures 1 through 
4 show successive stages of the evolution of the solution u(x, t) up to the 
“recurrence time,” as defined in [4], of t, = 30.4t,=4.838, where t,= l/271 is the 
(gradient) blowup time of the equation u, + vu, = 0. Note that our time scale differs 
from that in [4] by a factor of 2 due to the different spatial scales. For this experi- 
ment, we used nr = 35 and 4200 time steps; the CPU time on the IBM 3090 was 
17s. The error 1s; u:,,,~ dx - sh z&,prox dxl in the second invariant was 0.652 x 10p4. 

To test the robustness of the CK-S method, we decreased E from 1.21 x lop4 to 
1.21 x 10e6 in the “recurrence time” experiment and calculated the solution u(x, t) 
up to t = t,=0.159. With this very small value of E, the solution produced (as 
expected) a sharp gradient at t = tB as seen in Fig. 5, together with a small flurry 
of Gibbs oscillations. For this experiment, we used 1200 time steps and n, = 75; the 
CPU time on the IBM 3090 was 20s. 

We have also integrated the Burgers equation with E = 0 and v = 10 --3, using 
periodic boundary conditions and Uin(X) = sin 271x as initial condition. For this 
experiment, we used 500 time steps and nf = 75; the CPU time on the IBM 3090 
was 8.3s. We have chosen this small value of v to test once again the robustness of 
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FIG. 2. KdV equation: II,, =cos2nx, E= 1.21 x 10m4; solution at f= 1.6130. 
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FIG. 3. KdV equation: uin =cos 2nx, E = 1.21 x 10m4; solution at t = 2.4190. 
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FIG. 4. KdV equation: u,, = cos 2nx, E = 1.21 x 10m4; solution at t = 4.830. 
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FIG. 5. KdV equation: uin =cos 2n.r. E = 1.21 x 10m6; solution at [ = 0.159. 
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FIG. 6. Burgers equation: u,, = sin 2nx, Y = lo-‘; solution at t = 0.573. 

our method and its ability to deal with sharp gradients. Figure 6 shows the results 
calculated by our CK-S method for the solution U(X, t) of the Burgers equation at 
t = 0.573. As expected, v = lop3 is too small to produce any significant decay in the 
solution, which shows the expected sharp gradient accompanied by small, decaying 
Gibbs oscillations. 

VI. SUMMARY AND CONCLUSIONS 

In this work, we have benchmarked a new methodology for nonlinear systems 
by using the Burgers-Korteweg-deVries (BKdV) equations. This methodology 
involves the applications of the formalism developed by Cacuci et al. [ 11 to obtain 
the nonlinear propagators for the BKdV equation. This transforms the BKdV 
equation from an initial/boundary value problem into a closed-form nonlinear 
integral equation that is amenable to solution by various numerical methods. We 
have chosen to solve this integral equation by using spectral (Fourier) decomposi- 
tion spatially and implicit Runge-Kutta temporally; the spectral decomposition is 
suggested naturally by the expression of the auxiliary propagator appearing as a 
kernel in the closed-form BKdV solution. 

We have tested the efficiency and accuracy of our new method on a series of 
benchmarks for the Korteweg-deVries and the Burgers equations, largely following 
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the accuracy levels used by Taha and Ablowitz [3] when showing that their 
method (based on the inverse scattering transform) bested a host of other numerical 
methods. For these benchmarks, the comparisons we have presented in this work 
indicate that our new method is more efftcient for comparable accuracy than the 
Taha-Ablowitz method and proved to be comparable to a finite element method 
(FEM), described in Refs. [4-61, which is specifically designed for solving the KdV 
equation with maximum efficiency. In addition to these accuracy comparisons, we 
performed several experiments with the KdV and Burgers equations, involving 
sharp gradients, to test more severely the robustness of our method. These 
experiments were handled quite well by our method-which produced accurate 
approximations in reasonable CPU times. These CPU times are expected to 
decrease considerably by employing fast Fourier transform techniques-as we are 
currently using in conjunction with application of nonlinear propagators to 
multidimensional nonlinear systems. 

ACKNOWLEDGMENTS 

This work was partially supported by the Science Alliance of UTK-ORNL and the US. Department 
of Energy under Contract DE-AC05840R21400 with Martin Marietta Energy Systems, Inc. The work 
of the second author was also supported by the Air Force Oftice of Scientific Research under Grant 
AFOSR-88-0019. Special thanks are due to Ms. Barbara Merlo for her expert typing of this manuscript. 
We also thank Ms. Camille S. Muir and Dr. T. Taha for providing the listing of the Taha-Ablowitz code 
used in Ref. [3]. Finally, we wish to thank the three anonymous reviewers for their helpful comments. 

REFERENCES 

1. D. G. CACLJCI, R. B. PEREZ, AND V. PROTOPOPESCU, J. Math. Phys. 29, 353 (1987). 
2. D. G. CACUCI AND V. PROTOPOPESCU, J. Phys. A: Math. Gen. 22, 2399 (1989) 
3. T. R. TAHA AND M. J. ABLOWITZ, J. Comput. Phys. 55, 231 (1984). 
4. N. J. ZABUSKI AND M. D. KRUSKAL, Phys. Rev. Left 15, 240 (1965). 
5. G. A. BAKER, V. A. DOUGALIS, AND 0. A. KARAKASHIAN, Math. Compur. 40, 419 (1983). 
6. V. A. DOUGALIS AND 0. A. KARAKASHIAN, Math. Comput. 45, 329 (1985). 
7. J. L. BONA, V. A. DOUGALIS, AND 0. A. KARAKASHIAN, Conservative high order schemes for the 

generalized Korteweg-deVries Equation, in preparation. 
8. B. FORNBERG AND G. B. WHITHAM, Philos. Trans. Roy. Sot. 289, 373 (1978). 
9. C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI, AND T. A. ZANG, Spectral Method.7 in Fluid Dynamics 

(Springer-Verlag, New York, 1987). 
10. J. C. BUTCHER, Math. Compuf. 18, 50 (1964). 

581189!1-6 


